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My major Discovery:
I If dominating fluctuations are ”inside” - corresponding

forces can be termed ”Van der Waals forces”;
I If fluctuations ”outside” are dominating, one has to deal

with ”Casimir effect”.



Figure: Casimir and VdW phenomena are also inexhaustible.



Conceptional outline:

Manifolds embedded in a correlated medium can impose
boundary, or modify material parameters. this usually gives rise

I to mean field forces, which are due to the deformation of
the medium and

I to Casimir-VdW forces which are due to modification of its
thermal fluctuations.

I Such interactions are generally non
pairwise additive.



Membrane self organization:

Figure: Self-aggregation of amphiphilic molecules



Membranes:
Amphiphilic molecules spontaneously self-assemble into
membranes, vesicles and other structures.

I A suitable thermodynamic potential is Ω(T , µ, v) since
these quantities are continuous through the interface
(while, e.g., mass density is discontinuous).

I The interface Ω
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Here R1 and R2 are local curvature radii (combined in
mean and Gaussian curvatures).



Possible membrane configurations:
I One big spherical vesicle (or one infinite membrane):

E1 = 4π(2κ + κ̄)

I Many small vesicles E = NvesE1, and also translational
entropy

−TNves
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)
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(Ntot is the total number of molecules, Nsite number of
in-plane sites available for vesicles).

I Gauss-Bonnet theorem∫
dA

1
R1R2

≡ −4π(g − 1)

(g is genus, or the number of topological handles). Lattice
of passages

E = −Npas4πκ̄

(translational entropy of passages is similar to that of
vesicles).



Schematic phase diagram of membranes:
Gaussian rigidity

bending modulus

Spontaneous topological handles or passages formation.

Sponge or Cubic phases.

Lamellar phase (or single membrane)

Spontaneous vesicles nucleation

Figure: Various membrane phases



Figure: Fluctuations of a stack of membranes stabilized by
self-avoiding ”Casimir” interactions



Casimir-like Undulation repulsion:
I Membranes undergo fluctuations about some average flat

(on a scale ξ||) configuration;
I The height fluctuations in the normal direction z

〈h2〉 ∝
T ξ2

||
κ

I Collisions between membranes occur when height
fluctuations become of order of the interlayer spacing l .
Thus h can be identified with l and ξ|| with the mean
distance between collisions in the plane;

I The free energy per collision is estimated as T , and
therefore the membrane free energy per unit area

Fst ' T
ξ2
||

and in terms of d it reads as

Fst ' T 2

κl2



Figure: Oriented versus crumpled manifolds



Orientationally ordered manifolds:
I Each manifold can be characterized by its persistence

length ξp and can be considered as orientationally ordered
at linear size L < ξp.

I Oriented manifold can be viewed as an ensemble of
humps with a longitudinal extension set by the correlation
length ξ||, and typical roughness ξ⊥ ∝ ξζ

||. One usually has
ζ = 1/2 for interfaces in d = 1 + 1 and ζ = 1 for fluid
membranes in d = 2 + 1.

I Since ξ|| is the correlation length, different humps are
essentially uncorrelated. Thus a manifold with projected
area L

d||
|| may be viewed as (L||/ξ||)d|| independent humps.

The thermal fluctuation free energy

Ffl ∝ T
(

L||
ξ||

)d||



Casimir like repulsion (per unit projected area)
between two oriented manifolds:

Vfl =
Ffl

L
d||
||
∝ T

ξ
d||
||
∝ T

ξ
d||/ζ

⊥

The mean distance l ' ξ⊥ between two interacting manifolds

Vfl =
T
lτ

; τ ≡ d||
ζ



Crumpled manifolds:
I Large scale configuration consists of blobs of linear size

Xb. Each blob contains a manifold with total area (Nba)d||

(a is a small distance cutoff).
I For each blob

Xb ∝ a Nν
b

The exponent ν depends on d⊥ and internal manifold
structure (e.g., for linear polymers in d = 1 + 2, ν = 3/5).

I It is again plausible to assume that correlations between
different blobs can be neglected. Then a crumpled
manifold consists of (N/Nb)d|| independent blobs and

Ffl ∝ T
(

N
Nb

)d||

and

Vfl ∝
Ffl

(aN)d||
∝ T

lτb
; τb ≡

d||
ν



Two persistence lengths:
I

ξκ ∝ w exp
(

4πκ

3T

)

where w is molecular scale (membrane thickness), and on
scales smaller than ξκ the membrane is flat with respect to
bending fluctuations.

I

ξκ̄ ∝ w exp
(
−6πκ̄

5T

)



Two regimes:
I Passage regime

0 < −κ̄ <
10
9

κ

For low temperatures, and intermembrane distances
l ' lmax ' ξκ̄ ¿ ξκ there are numerous passages
connecting membranes. In this regime such a lamellar
phase melts into a sponge phase.

I Droplet regime

−κ̄ >
10
9

κ

For low temperatures, and intermembrane scales
lmax ' ξdrop ' ξκ(ξκ/ξκ̄)10/9 ¿ ξκ ¿ ξκ̄ there are numerous
droplets between lamellas (i.e., melting into a droplet
phase).



Bending modulus

Gaussian rigidity

fluctuational passages

fluctuational
droplets

Figure: Passage and droplet fluctuations.



Renormalization of the curvature moduli:
I

κ(l) ∝ 3T
4π

ln
(

ξκ

l

)

I

κ̄(l) ∝ 5T
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ln
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l
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)



One passage connecting two lamellas:
Its curvature energy is estimated as

Epas ∝ κ(ξ)

(
r
ξ

)2

− 4πκ̄(r)

where r is the size of the passage neck, and ξ is the size of the
passage deformation region. At distances from the neck
smaller than ξ, the presence of a passage curves the
membrane (1-st term in Epas).

Figure: A passage geometry



If there are no overhangs:
For almost planar membrane, minimization of the bending
energy gives the biharmonic Euler-Lagrange equation

∆2h(r) = 0

In cylindrical coordinates the general solution is

h(r) =
1
4

r2(2C2 − C3) + C4 +

(
C1 +

1
2

r2C3

)
ln r

For a single passage in an infinite planar membrane the
bending energy vanishes and the membrane deformation is
catenoid-like

h(r) ∝ req ln
(

r
req

)



Catenoid as a trial passage shape:
We approximate the passage as a catenoid (trial surface) and it
gives the condition l ' 2r ln(ξ/r) relating ξ and r .

I A catenoid is a 3D shape made by rotating a catenary
curve y = a cosh(x/a) around the x axis.

I A catenoid is one of several types of minimal surfaces.
One can bend a catenoid into a helicoid without stretching:

x(u, v) = cos θ sinh v sin u + sin θ cosh v cos u

y(u, v) = − cos θ sinh v cos u + sin θ cosh v sin u

z(u, v) = u cos θ + v sin θ

where for u, v in (−π π], x in (−∞∞), and the deformation
parameter −π < θ ≤ π



Minimizing energy we find the passage energy

Epas ' −10
3

T ln
l
ξκ̄

and size

ξeq ∝ l

√
(κ(l)/T )

ln(κ(l)/T )
; req ∝ l

ln(κ(l)/T )

Next we consider 2 passages at distance R. They interact via
the repulsive potential

Upp(R) ∝ κ(R)
( req

R

)2

I for R > ξeq, Upp < T , and the interaction can be ignored;
for R < ξeq, Upp > T .

I The passage repulsion can be viewed as a hard core
repulsion with its core size ' ξeq.



Fluid of passages:
Mixing entropy plays a role of hard core particle free energy per
unit area

Fpas ' Tnp ln
np

n0(l)
− T ln(1− npξ2

eq)

where
np ∝ 1

ξ2
eq

and n0(l) is passage density in a dilute limit: n0(l) ∝ l4/3.
Minimizing over np we end up

Fpas ' − T
ξ2

eq
ln(1 + n0(l)ξ2

eq) ' − T 2

κ(l)l2
ln

(
1 +

(
l
l∗

)10/3
)

where l∗ ∝ ξκ̄.



Passage induced attraction:
Tending to keep the membranes at a preferred distance
l ' l∗ ' ξκ̄

Free energy

distance

Figure: Passage mediated attraction between membranes



Membrane in nematic solvent:

Figure: Nematic strong anchoring on a membrane.



I Strong homeotropic anchoring

δn(r⊥, z = 0) = −∇⊥u(r⊥)

and since bulk nematic solvent minimizes the bulk
orientational energy

Fn =
1
2

K
∫

d3r(∇n)2

I

δn(r⊥, z) =

∫
d2q⊥
(2π)2 iq⊥u(q⊥) exp(−iq⊥r⊥ − |q⊥|z)

with the limits between 2π/a and 2π/L⊥ (L⊥ is the
membrane size).

I Substituting δn into Fn and integrating over z

Fn =
1
2

K
∫

d2q⊥
(2π)2 |q⊥|3(1− exp(−|q⊥|Lz))|u(q⊥)|2



I Convenient interpolation formula which handles properly
large and small q limits

Fn =
1
2

K
∫

d2q⊥
(2π)2

q4
⊥Lz

1 + |q⊥|Lz
|u(q⊥)|2

I To this one has to add

Fb =
1
2
κ

∫
d2r⊥(∇2

⊥u)2

I Single-membrane (Lz = ∞):

< |δn(r)− δn(0)|2 >= 2T
∫

d2q⊥
(2π)3

1− cos(q⊥r)
K |q⊥|+ κq2

⊥
=

T
πκ
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∣∣∣∣



I Correlation length ξ0 for which n fluctuations are of order
unity

ξ0

a
' exp(4πκ/3T )

1− Ka/(2πκ)[exp(4πκ/3T )− 1]

For K = 0 the membrane in isotropic solvent is crumpled at
distances larger than ξ0. For K 6= 0 ξ0 increases rapidly
with K and reaches the system size (∞) for

Ka
2πκ

= [exp(4πκ/3T )− 1]−1

I Typical parameters:

κ ' 5 · 10−13 erg ; K ' 10−6 erg/cm ; a ' 1 nm



Membrane roughness:
I Correlation length ξ0 for which n fluctuations are of order

unity

< u2(r) >= T
∫

d2q⊥
(2π)2

1
κq4

⊥ + K |q⊥|3
=

T
2πK 2

(
K

L⊥
2π

+ κ ln
2πκ + aK

2πκ + L⊥K

)

I For K = 0 we recover the known for a membrane in
isotropic solvent behavior < u2 >∝ L2

⊥, and in a strong
nematic solvent < u2 >∝ L⊥.



Renormalization of κ:
I By non-linear terms in the bending energy

κanh
R = κ− T

4π
ln

κqmax + K
κqmin + K

I By nematic Casimir effect

κCas
R = κ +

3T
128π

ln
L⊥
a

The same in words:
I In the limit K → 0 (almost isotropic solvent):

κanh
R ' κ− T

π
ln

L⊥
a

I When K 6= 0, divergent ln is replaced by a constant factor

ln(1 + κπ/(aK ))

I In addition there is also increase of κ due to Casimir effect
in a nematic solvent.



Stack of membranes (Lz = d):
I Strong nematic solvent condition Kd À κ (might be weaker

condition than Ka À κ)

< u2(r) >=
T

4πκq2
0

1 + Kd(1 + 2q0d)/κ

1 + (Kd/κ)2

where q0 is the low-q cutoff in the membrane plane should
be determined self-consistently.

I Membrane stack to be sterically stabilized

< u2 >' d2



This determines q0:
I for a weak nematic solvent

q0d '
√

T
κ

I for a strong nematic solvent Kd À κ

(q0d)2 =
T

4πKd
(1 + 2q0d)

since typically κ > T and Kd > T

q0 '
(

T
4πK

)1/2

d−3/2

I This defines a new in-plane correlation length ξ = q−1
0

(mean distance between membrane collisions), and it
yields

P ' T
dξ2



Casimir energy for a membrane stack in
nematic solvent:

I because F/A = Pd we arrive at

F
A

=
T 2

4πKd3

I should be compared with the d−2 behavior for a stack in
isotropic solvent and with d−1 law for electrostatic
stabilization.



Elastic energy for a membrane stack in
nematic solvent:

I

Fsm =
1
2

∫
d3q

(2π)3

(
Bq2

z +
(κ

d
+ K

)
q4
⊥
)
|u(q)2|

I B scales as d−α with α = 2 , 3 , 4 for electrostatic,
Casimir-like in isotropic solvent, and Casimir-like in
nematic solvent, stabilizations.

I According to the Landau - Peierls theorem, a membrane
stack structure factor has power law behavior (instead of
Bragg peaks):

S(0, qz) ∝ (qz − 2π/d)−2+η

I

η =
π

2d2
T√

B(κ/d + K )



Miscellaneous:

I Because K > κ/d in a strong nematic solvent η decreases
when the solvent undergoes nematic transition.

I In smectic solvent

κR → κ + 2
√

κsBd

I Magnetic field along the normal to a membrane

|q⊥|3 → q2
⊥
√

q2
⊥ + ξ−2

H

where ξH = (K/χaH2)1/2.
I Magnetic field further reduces the height fluctuations of the

membrane and correspondingly yields to very weak
pseudo-Casimir repulsion, and suppresses the Landau -
Peierls instability in favor of Bragg peaks at q = 2π/d .
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