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My major Discovery:
» If dominating fluctuations are "inside” - corresponding
forces can be termed "Van der Waals forces”;
» If fluctuations "outside” are dominating, one has to deal
with "Casimir effect”.
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Figure: Casimir and VdW phenomena are also inexhaustible.



Conceptional outline:

Manifolds embedded in a correlated medium can impose
boundary, or modify material parameters. this usually gives rise

» to mean field forces, which are due to the deformation of
the medium and

» to Casimir-VdW forces which are due to modification of its
thermal fluctuations.

» Such interactions are generally non
pairwise additive.



Membrane self organization:
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Figure: Self-aggregation of amphiphilic molecules



Membranes:
Amphiphilic molecules spontaneously self-assemble into
membranes, vesicles and other structures.

» A suitable thermodynamic potential is Q(T, , v) since
these quantities are continuous through the interface
(while, e.g., mass density is discontinuous).

» The interface Q
QS: /dAu}S

Ws= 9 R, "R,)  2\R "R, "R R,
Here R; and R, are local curvature radii (combined in
mean and Gaussian curvatures).




Possible membrane configurations:
» One big spherical vesicle (or one infinite membrane):
E1 = 471'(2:‘? + E)

» Many small vesicles E = NgsE4, and also translational

entropy
ves Nves Nves

(N0t is the total number of molecules, Ngj,e Nnumber of
in-plane sites available for vesicles).
» Gauss-Bonnet theorem
1
=4 —1
/dA Ri R g -1)

(g is genus, or the number of topological handles). Lattice
of passages

E = — Npas47T/_€

(translational entropy of passages is similar to that of
vesicles).



Schematic phase diagram of membranes:

Gaussian rigidity

Spontaneous topological handles or passages formation.
Spongeor Cubic phases.

bending modulus
AN Lamellar phase (or single membrane)

Figure: Various membrane phases



Figure: Fluctuations of a stack of membranes stabilized by

self-avoiding "Casimir” interactions



Casimir-like Undulation repulsion:

» Membranes undergo fluctuations about some average flat
(on a scale ) configuration;
» The height fluctuations in the normal direction z
AL
(h*) o T
» Collisions between membranes occur when height
fluctuations become of order of the interlayer spacing /.
Thus h can be identified with / and &, with the mean
distance between collisions in the plane;
» The free energy per collision is estimated as T, and
therefore the membrane free energy per unit area

T
Fst ~ —

2
3
and in terms of d it reads as
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Figure: Oriented versus crumpled manifolds




Orientationally ordered manifolds:

» Each manifold can be characterized by its persistence
length £, and can be considered as orientationally ordered
at linear size L < &p.

» Oriented manifold can be viewed as an ensemble of
humps with a longitudinal extension set by the correlation
length ¢;, and typical roughness £ fﬁ. One usually has
¢ =1/2forinterfacesind =1+ 1 and ¢ = 1 for fluid
membranes ind =2 + 1.

» Since ¢, is the correlation length, different humps are
essentially uncorrelated. Thus a manifold with projected
area Lﬁ” may be viewed as (L;/¢,)% independent humps.
The thermal fluctuation free energy
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Casimir like repulsion (per unit projected area)
between two oriented manifolds:
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The mean distance | ~ £, between two interacting manifolds
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Crumpled manifolds:

» Large scale configuration consists of blobs of linear size
Xp. Each blob contains a manifold with total area (Npa)l
(ais a small distance cutoff).

» For each blob
Xb X aNg

The exponent v depends on d; and internal manifold
structure (e.g., for linear polymersin d =1+ 2, v = 3/5).
» |t is again plausible to assume that correlations between
different blobs can be neglected. Then a crumpled
manifold consists of (N/Nj)°ll independent blobs and
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Two persistence lengths:

13 wex %—H
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where w is molecular scale (membrane thickness), and on

scales smaller than £, the membrane is flat with respect to
bending fluctuations.
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Two regimes:
» Passage regime

O<—R<gfs

For low temperatures, and intermembrane distances

I ~ Inax ~ & < &, there are numerous passages
connecting membranes. In this regime such a lamellar
phase melts into a sponge phase.

» Droplet regime
10

—K > —K

9
For low temperatures, and intermembrane scales
Imax == Edrop = &x(€/€7)1Y° < &, < & there are numerous
droplets between lamellas (i.e., melting into a droplet
phase).
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Figure: Passage and droplet fluctuations.



Renormalization of the curvature moduli:

R (f/”)



One passage connecting two lamellas:
Its curvature energy is estimated as

Epas o #(€) @2 ~ ami (1)

where r is the size of the passage neck, and ¢ is the size of the
passage deformation region. At distances from the neck
smaller than &, the presence of a passage curves the
membrane (1-st term in Epas).




If there are no overhangs:
For almost planar membrane, minimization of the bending
energy gives the biharmonic Euler-Lagrange equation

A2h(r) =0
In cylindrical coordinates the general solution is

1 1
h(r) = ) r(2C, — C3) + C4 + (C1 + 2r203> Inr

For a single passage in an infinite planar membrane the
bending energy vanishes and the membrane deformation is

catenoid-like
h(r) o reqIn < ! )
leq



Catenoid as a trial passage shape:
We approximate the passage as a catenoid (trial surface) and it
gives the condition / ~ 2rIn(¢/r) relating £ and r.

» A catenoid is a 3D shape made by rotating a catenary
curve y = acosh(x/a) around the x axis.

» A catenoid is one of several types of minimal surfaces.
One can bend a catenoid into a helicoid without stretching:

x(u,v) = cos#sinhvsinu+ sinfcosh vcosu
y(u,v) = —cosésinh vcos u + sinf cosh vsinu
z(u,v) = ucosf + vsiné

where for u, v in (—7 7], x in (—oo 00), and the deformation
parameter —w < 0 < m



Minimizing energy we find the passage energy

10 |
Epas ~ 5 T

and size

VEDT) /

0 % a7 (1))

Next we consider 2 passages at distance R. They interact via
the repulsive potential

Upo(R) o w(R) (720

» for R > £eq, Upp < T, and the interaction can be ignored;
for R < &eq, Upp > T.

» The passage repulsion can be viewed as a hard core
repulsion with its core size ~ gq.



Fluid of passages:
Mixing entropy plays a role of hard core particle free energy per
unit area

Fpas =~ TnpIn —Tin(1 - npggq)

o
no(/)
where

1

€&q

and ng(/) is passage density in a dilute limit: ng(/) oc 14/3.
Minimizing over n, we end up

T T2 / 10/3
Foas =~ IN(1 + (1)) ~ o I (”(/*) )
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where [* x &z.



Passage induced attraction:
Tending to keep the membranes at a preferred distance

distance

Free energy

Figure: Passage mediated attraction between membranes



Membrane in nematic solvent:

Figure: Nematic strong anchoring on a membrane.



» Strong homeotropic anchoring
on(r.,z=0)=-V u(r))

and since bulk nematic solvent minimizes the bulk
orientational energy

Fo = ;K/dsr(Vn)z

on(r..2) = | (d sia, u(a,) exp(—iaLr. ~[.12)

with the limits between 27/aand 27/L, (L, is the
membrane size).

» Substituting én into F, and integrating over z

Fo= 3K [ S 810, P (1~ expl-lau La)luta.)?



» Convenient interpolation formula which handles properly
large and small g limits

d’q.  qtL;,

2
Fn = 2 27721+]ql|LZ| ()l

» To this one has to add
1
Fb = 2/€/d2rL(ViU)2
» Single-membrane (L, = o0):

d?q, 1 —cos(q.r)
(27)® K|q.| + kg2

< |5n(r) — 5n(0)[2 >= zr/

T 0 K +2rk/a
k| K+2rk/r




» Correlation length &, for which n fluctuations are of order
unity
So exp(4rk/3T)
a 1—Ka/(2rk)|exp(4nk/3T)—1]
For K = 0 the membrane in isotropic solvent is crumpled at
distances larger than &y. For K # 0 £, increases rapidly
with K and reaches the system size (o) for

Ka _

o = [exp(47k/3T) — 1]

» Typical parameters:

k~5.-10""erg; K~10"Cerg/cm; a~1nm



Membrane roughness:

» Correlation length &, for which n fluctuations are of order

unity
a? 1
< UA(r) >= T/ QL . =
)? kql + K|qL|
T L, 27k + aK
(k= In 2T
27 K2 ( or " ot LLK>

» For K = 0 we recover the known for a membrane in
isotropic solvent behavior < u? > L2, and in a strong
nematic solvent < 2 > L .
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Renormalization of «:
By non-linear terms in the bending energy

T KQmax + K
anh _ . 1 | max T R
By nematic Casimir effect
3T L
Cas __ L
FRT R 10g: N

The same in words:
In the limit K — O (almost isotropic solvent):
/{‘fq”h ~ K — I In L—J‘
T a

When K # 0, divergent In is replaced by a constant factor
In(1 + k7 /(akK))

In addition there is also increase of x due to Casimir effect
in a nematic solvent.



Stack of membranes (L, = d):

» Strong nematic solvent condition Kd > « (might be weaker
condition than Ka > k)

T 1+ Kd(1+2qod)/xk

2 _
S >= @ A (Kajwp

where qq is the low-q cutoff in the membrane plane should
be determined self-consistently.

» Membrane stack to be sterically stabilized

< U? >~ d?



This determines qo:

» for a weak nematic solvent

T
quN\/>
K

» for a strong nematic solvent Kd > «

T
(Clod)2 = m“ +2qod)

since typically k > Tand Kd > T

T \1/2 "
qo:(47rK> d

» This defines a new in-plane correlation length £ = q
(mean distance between membrane collisions), and it
yields

1

T

P~—
dg¢?



Casimir energy for a membrane stack in
nematic solvent:

» because F/A = Pd we arrive at

F T2

A~ 47Kd3

» should be compared with the d—2 behavior for a stack in
isotropic solvent and with d— law for electrostatic
stabilization.



Elastic energy for a membrane stack in
nematic solvent:

>

Fun=y | % (Ba2+ (5 + k) at) uta

» Bscales as d~¢ with o = 2, 3, 4 for electrostatic,
Casimir-like in isotropic solvent, and Casimir-like in
nematic solvent, stabilizations.

» According to the Landau - Peierls theorem, a membrane
stack structure factor has power law behavior (instead of
Bragg peaks):

S(0, qz) x (gz — 27 /d)2+7

T T
n= —
202 [B(x/d + K)




Miscellaneous:

» Because K > x/d in a strong nematic solvent n decreases
when the solvent undergoes nematic transition.

» In smectic solvent

kR — K+ 2+/ksBd

» Magnetic field along the normal to a membrane

9.2 — g5 \/q% + &7

where ¢y = (K/xaH?)'/2.

» Magnetic field further reduces the height fluctuations of the
membrane and correspondingly yields to very weak
pseudo-Casimir repulsion, and suppresses the Landau -
Peierls instability in favor of Bragg peaks at g = 27 /d.
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